
The amplitude w(x, y) of the displacement of the medium outside the elastic inclusion is 
found from (1.4) by using (2.5)and (2.6). 

Since the only assumptions made in deriving (2.5) and (2.6) were that s is small and c, 
b >> I, these equations are valid over the whole region, including the boundary. In (2.5) only 
the case y = const and x -~ oo must be excluded. In this case the expression for w~ (x, y) has 
a somewhat different form. If it is required to find the distribution of the wave field in- 
side the elastic inclusion, we obtain by proceeding as above 

[ 2P0/r0 (01 r) _ A l I 1  (01r)("1 COS ~ -~ B 2 sin Cp) '~]  
w3(s,q~)- 20~ ap~ ~2~eL,o(O~)(zao--Ao) (uS _A~)(io(0~)_ _~ i~(0~)] e'j +O(s). 

Thus, our proposed method permits the derivation of expressions for the wave field over 
practically the whole region under investigation which are rather simple to analyze. It 
should also be noted that this method can be employed without change to treat a similar prob- 
lem in two or three dimensions. In doing this only the awkwardness of the calculations is 
substantially increased. Thus, in treating a similar problem in two dimensions it is neces- 
sary in the first stage to solve a system of six rather than three integral equations. How- 
ever, all the basic properties of the elements of the system treated in the present article 
are retained. In calculating wave fields the integrals and sums which arise are of the same 
type as in the above treatment. 

] . 
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DETERMINATION OF STRESSES IN AN INFINITE PLATE WITH 

BROKEN OR BRANCHING CRACK 

P. N. Osiv and M. P. Savruk UDC 539.375 

In numerical solution of the singular integral equations which arise in two-dimensional 
elasticity theory problems for bodies with internally smooth curvilinear sections, the 
mechanical quadrature method, based on Gauss--Chebyshev quadrature expressions, is employed. 
Considering a piecewise-smooth crack as a limiting case of a system of smooth sections [I-3], 
having common points, we arrive at a system of singular integral equations with generalized 
singular integrands, containing fixed singularities together with the Cauchy integrand. 
Such equations can also be solved by the mechanical quadrature method, although more complex 
quadrature expressions are required (for example, Gauss--Jacoby expressions), which consider 
the singularity of the solution at the nodes of the section contour. Below, using the exam- 
ple of a broken, branching crack in an infinite plate, we present a simplified technique for 
numerical solution of the integral equations for piecewise-smooth sections using Gauss-- 
Chebyshev expressions. The solution singularity at the angular point or branching point is 
considered inexactly, so that such a solution is only effective when it is not necessary to 
determine the stressed state in the vicinity of such points. In particular, the proposed 
solution technique will be used to determine the stress intensity coefficients at the peaks 
of a piecewise-smooth crack. 

I. Basic Assumptions~ Within an infinite plane having a related Cartesian coordinate 
system xOy, let there be a system of N + ] rectilinear sections Ln, located along segments 
]Xnl ~ ~n of the local coordinate axes OnX n (n = 0, l .... , N). In the system xOy the origin 
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o 
O n is located at the points z = Zn, and the axes OnX n form angles ~n with the Ox axis. The 
edges of the cracks are loaded by a self-equalizing load pn(xn), and stress is absent at in- 
finity. Then the planar problem of elasticity theory for such a region reduces to a system 
of singular 'integral equations [4]: 

whe re 

fr lk 

~] [ [Kn~ (t~, x, 0 g~ (tk) -}- g~h (t~, x,~) g~ (t~)] dta = ~tp. (x,,), 1 x,~ [ < l , .  n = O, i . . . . .  N.: 
h = O  --~/k 

l . I )  

.(..) 
K,,~ (&, x,O = - : 2 -  r k - x,~ + 2,h_ x,, ; 1 2) 

L~h (t~, x,,) x.) ) 
- ~c~n 

Th = the~h q - Z~; S n  =xne  -}- Z~ 

I f  t h e  s e c t i o n s  Ln (n = 0 ,  l ,  . . . ,  N) a r e  i s o l a t e d ,  t h e n  t h e  s o l u t i o n  o f  s y s t e m  ( ] . ] )  
mus t  s a t i s f y  an a d d i t i o n a l  N + I c o n d i t i o n s ,  e n s u r i n g  u n i q u e n e s s  o f  t h e  d i s p l a c e m e n t s  a r o u n d  
e a c h  i n d i v i d u a l  c o n t o u r .  I n  t he  c a s e  o f  a s y s t e m  o f  i n t e r s e c t i n g  c o n t o u r s  L n ( n  = 0 , ]  . . . .  , 
N) ,  f o r m i n g  an open  c o n t o u r  L o + L ~ +  . . .  + L N ,  W e o b t a i n o n e c o n d i t i o n  [ 2 ] ,  w h i c h  e n s u r e s  u n i q u e n e s s  
of the displacements around the contour Lo + L~ + ... + L N. 

2. Two-Branched Broken Crack. We will consider a two-branch broken crack (N = I) formed 
by two rectilinear sections Lo and Li. Along the segment Ixl ~ ~ (~ = 7~.o) of the Ox axis we 
have the basic section Lo, from the right side of which, at an angle ~ to the Ox axis there 
exists a lateral section L~, 2L~ in length (Fig. I). The conditions for uniqueness of the 
displacements have the form 

l Ii ~ ,  , 
go(to)dto + e ~ ~ g~ (tl)dt~ "= O. ( 2 . 1 )  

- - l  --~! 1 

C o n s i d e r i n g  t h a t  i n  t he  g i v e n  c a s e  ~o = 0 ,  zo ~ = 0 ,  a~ = ~ ,  z~ = L(1 + ~ e ~ ) ,  ~ = 7 / Z ,  
we w r i t e  s y s t e m  ( l . 1 )  and  c o n d i t i o n  ( 2 . 1 )  i n  n o r m a l i z e d  f o r m :  

1 

--1 

1 

[MIo (~, h) ~ (~) + ' N , o  (~, h) ~ (~) q- ~'/11 (~, n) ~1 (~) ~- N n  (i, a]) ~ - ~ ]  d~ = ~(l I (~), I 'al < ~; 
- -1  

In Eqs. (2.2), (2.3) 

1 1 

�9 S ~ (~) a t  + ~e ~ .t ~1 
) 

(~) d~ 0. 
- -1  - -1  

and b e l o w  t h e  f o l l o w i n g  n o t a t i o n  i s  u s e d :  

M,~k(~, ~1) = lhKol(lk~, l ~ ) ;  Nnh(~, q) laLol(lk~, ln~l); 

/2 = z3 = z4 = zl: 4 = - z o; ,0 = _ ~ o ,  ~o = ~ 0 ;  

(2.3) 

% 

2 
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It is evident from Eq. ( 1 . 2 )  that the integrands Mo~(~, q), No~(~, ~), Mto($, n) and 
N~o(g, ~) have immobile singularities, i.e., they are generalized integrands. Consequently, 
the functions ~(~)and ~i(~) at the points ~ = I and ~ =--I have singularities. 
We take 

v Oq) va ('q), 

and assume that v(• and v~(• are not equal to zero. 

On the basis of the Sokhotskii--Plemel expressions for Cauchy-type integrals 

we have 

I [g'(t)  dt, L = L  o + L 1  r  = E'~ j t - ,  
L 

ig ' ( t )  = @+(t)  - -  O - ( t ) ,  t ~ L ,  (2.4) 

which is also valid at an angular point [5]. It follows from Eq. (2.4) that the singularity 
of the functions ~(O) and~ ~(~) at the points o = 1 and ~ = --| is the same as the maximum 
singularity of the complex potential ~(z) at the angular points of the wedgelike regions 
into which the crack divides the body, i.e., for definition of the exponent B we have the 
characteristic equation [6]: 

s i n i ( 1 - - ~ ) ( n + a ) ]  = - - ( i - - ~ ) s i n ( n + a ) ,  0 < : ~ < i .  

A n a l y s i s  o f  t h e  r o o t s  o f  t h i s  e q u a t i o n  shows ( s e e ,  f o r  e x a m p l e ,  [ 7 ] )  t h a t  B < 1 /2 .  
s e q u e n t l y ,  t h e  f u n c t i o n s  ~ ( q )  a n d ~  ~(~)  c a n  be  w r i t t e n  i n  t h e  f o r m  ~ ' (~)  = u ( n ) / / l  -- ~2 ,  
% ( ~ )  = u ~ ( q ) / / 1 -  z ,  a s s u m i n g  t h a t  u ( l )  = 0 ,  u l ( - - 1 )  = 0 .  

Now a p p l y i n g  t o  Eq. ( 2 . 2 )  and c o n d i t i o n  ( 2 . 3 )  
Is] 

1 

Con- 

the Gauss--Chebyshev quadrature expressions 

N 1 

u(~)d~ ~ ~ 1  u(lh) ( c~ ~ '  m = i ' 2 '  Nt--i) 
F ~ - ~  ( ~ -  n~) = 7,~ = ~ = ~ , ~1~ . . . . . .  

1 N1 
S u (~) d~ ~ 2k--  

we arrive at a system of 2Ni -- 1 algebraic equations for determination of 2N~ unknowns U(Ek) 
and u~(~k). To obtain a closed system, we add one of the equations 

N I 

~,(1) = - ~ ~ ( - t )  4,, (~) ctg 2 k -  t 
~=i -~-i ~ = O, (2.5) 

N I 

ul ( -  ( .  t 7 1 §  = o. 
NI h=i 

Calculations show that the efficiency of the numerical solution is practically unaffected by 
which expression of Eq. (2.5) is chosen for this purpose. 

The stress intensity coefficients at the left K~,2 and right K+,2 sides of the broken 
crack have the form [4] 

N i 

K + - -  iK~" = " = ( - -  t)aul (~k) ctg ~ z~, 

�9 N 1 Yr~ , 2k-1  

We w i l l  o b t a i n  a s o l u t i o n  f o r  t h e  c a s e  w h e r e  t h e  e d g e s  o f  t h e  c r a c k  a r e  f r e e  o f  l o a d ,  
while at infinity the plane is in tension from external stresses p and q, acting in mutually 
perpendicular directions, with p directed at an angle u to the Ox axis, By superposition 
this problem reduces to system (2.2) with right-hand side 

o0q) = - - ( i / 2 ) [ p  + ~ - -  (p - -  q)e~vl, 

(~01) = - - (1/2)[p  + q - -  (p - -  q)e~i(~'-~).]. 
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For E = 0.5, Figs. 2-5 show the stress intensity coefficients K~ and K2 in units of p/~ 
as functions of the angle at Which the lateral crack is oriented for the case of uniaxial 
(q = 0, y = ~/2, Figs. 2 and 3) and omnidirectional (p = q, Figs. 4 and 5) tension. The 
solid lines describe the right-hand side of the crack (side A), and the dashed lines, the 
left. Curves I correspond to the case of a two-branched broken crack. 

3. Three-Branch Broken Crack. We assume that the broken crack consists of three recti- 
linear segments Lo, L~, and L= (Fig. I). Since in this case the stressed state of the body 
is symmetric relative to the center of the crack (z = 0), we obtain g~(t2) = g~(t~). The 
system of three (N = 2) integral equations (I.I) with consideration of the symmetry involved 
is written in the form of Eq. (2.2), where to the integrands Mol(~, q), No,(g, ~), M~(g, ~) 
and N~(~, q) we must add the functions Mo~(~, q), No=(~, ~), M~(~, ~, and N~=v~,~ n;', respec- 
tively. The condition for uniqueness of the displacements then takes on the form 

1 

-j'~ (b dE = 0. 
- -1  

N u m e r i c a l  r e s u l t s  f o r  t h i s  p r o b l e m  a r e  i l l u s t r a t e d  by F i g s .  2 -5  ( c u r v e s  2 ) .  

We will now consider a broken crack consisting of segments Lo, L~, and L3, where the 
lateral sections are symmetric about the axis Oy (Fig. I). Then from the symmetry of the 
problem it follows that g~(x3) = g~(x~ In this case we also arrive at system (2.2), in 

6 ~- c<deg 

F i g .  4 

' . _  I I J i 
K~ / F  v " a _...---e-"- 
o ,~ i / 1 " - !  A 

i I I / /  g I i 
~o! / !//'e A / ! 

/ /  / i 
' 1 / ,  i / J ~  ~, ~ ~ ! ~ i 

' ~ ~ % '  A 

-o.2~ x 2 -'7-- . . . .  7- 
._. Jr ~ deg 

F i g .  5 
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which we add to the integrands Mo~(~, ~), No~(~, D), Mzz($, ~) and N~z(~, ~} we add, respec- 
tively, ' ' . Noa,~, n], IIo~,~, n), NI~(~, D) and M~s~, n). The uniqueness condition is written 
in the form 

(~)d~+2eilm e ~ ~(~)d~ = 0 .  
- - 1  

The stress intensity coefficients K~ and K2 are shown as functions of angle ~ for the 
three-branched crack in Figs. 2-5 (curves 3). 

4. Branching Crack. Let an infinite plate be weakened by a main section Lo, from the 
right side of which two lateral sections L~ and L4 exit (Fig. ]). The integral equations of 

~( \ __ f( , _ 
the problem for such a region have the form of Eq. (].I) with N 4 and g2.x2; - g3,x3; - 0. 
Numerical solution of integral equations (l.i) can be performed by the same technique as in 
the previous case of broken cracks. 

' r 2 2 ~ Considering the condition g�88 = gz(xl), we arrive at system ~ . , the solution of 
which must satisfy the equation 

~ ( g )  dg+2e~e  e ~ ~(g) dg =0.  
- - I  - -1  

Here we add to the  i n t e g r a n d s  g o ~ ( g ,  n ) ,  No~(~, n ) ,  M ~ ( ~ ,  n) and N ~ ( ~ ,  n ) ,  r e s p e c t i v e l y ,  
N o 4 ~ ,  n ) ,  Mo,(~,  n ) ,  N14(~, n) and M ~ , ~ ,  n ) .  Curves 4 o f  F i g s .  2-5 show t h i s  c a s e .  

We n o t e  t h a t  the p rob lem o f  u n i a x i a l  t e n s i o n  a t  i n f i n i t y  i n  a p l a n e  w i t h  b r a n c h i n g  
c r ack  was c o n s i d e r e d  in  a s i m i l a r  manner in  [ 3 ] .  The sys t em o f  s i n g u l a r  i n t e g r a l  e q u a t i o n s  
(1 .1 )  was a l s o  used,  and n u m e r i c a l  s o l u t i o n  was e f f e c t e d  w i t h  the  a id  o f  Gauss and L o b a t t o  
q u a d r a t u r e  e x p r e s s i o n s .  The r e s u l t s  o b t a i n e d  h e r e i n  ag ree  w e l l  w i t h  the  d a t a  o f  [3 ] .  

We w i l l  c o n s i d e r  a more g e n e r a l  case  o f  the b r a n c h i n g  c r a c k ,  where from b o t h  ends o f  
the main c r a c k  Lo t h e r e  e x i t  two l a t e r a l  c r a c k s :  Lz, L, and L2, L3 (see F i g .  1). I t  f o l l o w s  
from symmetry that g~(x~) = g;(x~) = g~(x,) = gI(x~). Then system (1 .1)  (N = 4) leads to 
Eq. (2.2), where we add to the integrands Mo~(~, n), No~(~, n), MI~(~, n} and Nzz(~, n), the 
quantities Mo=($, ~} + Noa(~, ~) + No~(~, n), No=(~, n) + Mo~, ~),+ Mo4(~, n), Mz2(~, n> + 
N~s(~, n) + NI~(~, n) and N~=($, ~ + Mzs(~, n} + M~(~, n). The uniqueness condition has 
the form 

1 

] ~ (~) d~ = o .  
--I 

The stress intensity coefficients obtained for this last case (curves 5 of Figs. 2-5) 
with uniaxial tension of the plate practically coincide with the results of []0]. 

5. Crack with Infinitely Small Branches. In the mechanics of failure, in particular, 
in constructing ener~ criteria for crack propagation, solutions of the above problems for 
the li~ting case in which the ratio of the branch lengths to that of the main crack is in- 
finitely small are of principal significance. In this case the stress intensity coefficients 
at the edges of thel small branches can be represented in the form Ki = kiKi1(~} + k2Ki2r~ ~,, �9 
(i = 1, 2), where kl and k2 are the intensity coefficients for the main crack in the absence 
of branches~ 

0S-7j>-  
x ~2 

~ ~ a, deg 

Fig. 6 
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The convergence of the numerical solution of system (2.2) to an exact value degrades as 
the ratio of side crack length to main crack length decreases. Therefore in the limiting 
case as ~/l § 0 a numerical solution cannot be obtained directly. For a two-branch broken 
crack (Fig. 6, solid lines) and a three-branched crack (Fig~ 6, dashed lines) the values of 
Kij(~) were calculated by extrapolation from numericsl data obtained for ~/l = 0.01, 0.02. 

Similar functions Kij(a) were presented in [11]. In the case of the broken crack there 
is quite good agreement between the results obtained and the data of [11] (maximum relative 
deviation does not exceed 6%), with significantly greater differences for the branching 
crack. For this last case, [12] presents the dependence of stress intensity coefficients on 
angle ~ for ~i/~ = 0.I. We note that for such an ll/l value the intensity coefficients cal- 
culated by solution of Eq. (2.2) practically coincide with the data of [12]. 
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OPENING OF A NATURAL MACROCRACK 

A. P. Vladimirov and V. V. Struzhanov UDC 539. 375 

The shortcomings of the simplest models of macrocracks have been noted many times in 
the literature. Attempts to construct complete models reduce to selecting some hypothesis 
concerning the behavior of the medium at the tips of the crack [I, 2], but the process of 
formation of real macrocracks was not given the proper attention. 

A model of natural macrocracks, which takes into account ~he presence of residual com- 
pressive stresses arising at the tip of a crack as it is formed and opposing the opening up 
of the macrocrack, was proposed in [3, 4]. The purpose of this investigation is to provide 
experimental justification of the model proposed. 

1.To investigate the mechanisms involved in opening up of a natural macrocracks, we 
prepared a rectangular specimen consisting of SO-95 Plexiglas, to which we gave a matted 
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